Computational scales of Sobolev norms with application to preconditioning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational scales of Sobolev norms with application to preconditioning

This paper provides a framework for developing computationally efficient multilevel preconditioners and representations for Sobolev norms. Specifically, given a Hilbert space V and a nested sequence of subspaces V1 ⊂ V2 ⊂ . . . ⊂ V , we construct operators which are spectrally equivalent to those of the form A = ∑ k μk(Qk −Qk−1). Here μk , k = 1, 2, . . . , are positive numbers and Qk is the or...

متن کامل

High-order Sobolev preconditioning

This paper compares the use of firstand second-order Sobolev gradients to solve differential equations using the method of least-squares steepest descent. The use of high-order Sobolev gradients offers a very effective preconditioning strategy for the linear part of a nonlinear differential equation. 2005 Elsevier Ltd. All rights reserved.

متن کامل

Sobolev Norms of Automorphic Functionals

It is well known that Frobenius reciprocity is one of the central tools in the representation theory. In this paper, we discuss Frobenius reciprocity in the theory of automorphic functions. This Frobenius reciprocity was discovered by Gel’fand, Fomin, and PiatetskiShapiro in the 1960s as the basis of their interpretation of the classical theory of automorphic functions in terms of the represent...

متن کامل

Wavelet characterization of Sobolev norms∗

Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, thus a Banach space. We begin with the classical definition of Sobolev spaces. Definition 1. Let k be a nonnegative integer and let 1 < p < ∞ ...

متن کامل

Γ-convergence, Sobolev norms, and BV functions

We prove that the family of functionals (Iδ) defined by Iδ(g) = ∫∫ RN×RN |g(x)−g(y)|>δ δ |x− y|N+p dx dy, ∀ g ∈ L(R ), for p ≥ 1 and δ > 0, Γ-converges in L(R ), as δ goes to 0, when p ≥ 1. Hereafter | | denotes the Euclidean norm of R . We also introduce a characterization for BV functions which has some advantages in comparison with the classic one based on the notion of essential variation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1999

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-99-01106-0